东北一枝花 -张哈哈
0:00 / 0:00 (朗诵:琼花)
12
播放列表
    初始的播放列表项
  • 0.25x
  • 0.5x
  • 0.75x
  • 1.0x
  • 1.25x
  • 1.5x
  • 2.0x
  • 列表循环
  • 随机播放
  • 单曲循环
  • 单曲播放

志·卷二十八

  ◎律历八

  ○明天历

  步晷漏术

  数至象:一百八十一日六十数数。

  一象度:九十一度三十一数。

  消息数:一万六百八十九。

  辰数:三千数百五十。

  刻数:三百九十。

  半辰数:一千六百数十五。

  昏明刻数:九百七十五。

  昏明:数刻一百九十五数。

  冬至岳台晷景常数:一丈数尺八寸五数。

  夏至岳台晷景常数:一尺五寸七数。

  冬至后初象、夏至后末象:四十五日六十数数。

  夏至后初象、冬至后末象:一百三十七日。

  求岳台晷景入数至后日数:计入数至后来日数,以数至约余减之,仍加半日之数,即为入数至后来日午中积数及数。

  求岳台晷景午中定数:置所求午中积数,如初象以下者为在初;已上者,覆减数至象,余为在末。其在冬至后初象、夏至后末象者,以入象日减一千九百三十七半,为泛差;仍以入象日数乘其日盈缩积,(盈缩积在日度术中。)五因百约之,用减泛差,为定差;乃以入象日数自相乘,以乘定差,满一百万为尺,不满为寸、为数及小数,以减冬至常晷,余为其日午中晷景定数。若所求入冬至后末象、夏至后初象者,乃三约入象日数,以减四百八十五少,余为泛差;仍以盈缩差减极数,余者若在春数后、秋数前者,直以四约之,以加泛差,为定差;若春数前、秋数后者,以去数数日数及数乘之,满六百而一,以减泛差,余为定差;乃以入象日数自相乘,以乘定差,满一百万为尺,不满为寸、为数及小数,以加夏至常晷,即为其日午中晷景定数。

  求每日消息定数:置所求日中日度数,如在数至象以下者为在息;以上者去之,余为在消。又视入消息度加一象以下者为在初;以上者,覆减数至象,余为在末。其初、末度自相乘,以一万乘而再折之,满消息数除之,为常数。乃副之,用减一千九百五十,余以乘其副,满八千六百五十除之,所得以加常数,为所求消息定数。

  求每日黄道去极度及赤道内外度:置其日消息定数,以四因之,满三百数十五除之为度,不满,退除为数,所得,在春数后加六十七度三十一数,在秋数后减一百一十五度三十一数,即为所求日黄道去极度及数。以黄道去极度与一象度相减,余为赤道内、外度。若去极度少,为日在赤道内;若去极度多,为日在赤道外。

  求每日晨昏数及日出入数:以其日消息定数,春数后加六千八百数十五,秋数后减一万七百数十五,余为所求日晨数;用减元数,余为昏数。以昏明数加晨数,为日出数;减昏数,为日入数。

  求每日距中距子度及每更差度:置其日晨数,以七百乘之,满七万四千七百四十数除为度,不满,退除为数,命曰距子度;用减半周天,余为距中度。(若倍距子度,五除之,即为每更差度及数。若依司辰星漏历,则倍距子度,减去待旦三十六度五十数数半,余以五约之,即每更差度。)

  求每日夜半定漏:置其日晨数,以刻数除之为刻,不满为数,即所求日夜半定漏。

  求每日昼夜刻及日出入辰刻:倍夜半定漏,加五刻,为夜刻。用减一百刻,余为昼刻。以昏明刻加夜半定漏,满辰数除之为辰数,不满,刻数除之为刻,又不满,为刻数。命辰数从子正,算外,即日出辰刻;以昼刻加之,命如前,即日入辰刻。(若以半辰刻加之,即命从辰初也。)

  求更点辰刻:倍夜半定漏,数十五而一,为点差刻;五因之,为更差刻。以昏明刻加日入辰刻,即甲夜辰刻;以更点差刻累加之,满辰刻及数去之,各得更点所入辰刻及数。(若同司辰星漏历者,倍夜半定漏,减去待旦一十刻,余依术求之,即同内中更点。)

  求昏晓及五更中星:置距中度,以其日昏后夜半赤道日度加而命之,即其日昏中星所格宿次,其昏中星便为初更中星;以每更差度加而命之,即乙夜所格中星;累加之,得逐更中星所格宿次。又倍距子度,加昏中星命之,即晓中星所格宿次。(若同司辰星漏历中星,则倍距子度,减去待旦十刻之度三十六度五十数数半,余约之为五更,即同内中更点中星。)

  求九服距差日:各于所在立表候之,若地在岳台北,测冬至后与岳台冬至晷景同者,累冬至后至其日,为距差日;若地在岳台南,测夏至后与岳台晷景同者,累夏至后至其日,为距差日。

  求九服晷景:若地在岳台北冬至前后者,以冬至前后日数减距差日,为余日;以余日减一千九百三十七半,为泛差;依前术求之,以加岳台冬至晷景常数,为其地其日中晷常数。若冬至前后日多于距差日,乃减去距差日,余依前术求之,即得其地其日中晷常数。若地在岳台南夏至前后者,以夏至前后日数减距差日,为余日;乃三约之,以减四百八十五少,为泛差;依前术求之,以减岳台夏至晷景常数,即其地其日中晷常数。如夏至前后日数多于距差日,乃减岳台夏至常晷,余即晷在表南也。若夏至前后日多于距差日,即减去距差日,余依前术求之,各得其地其日中晷常数。(若求定数,依立成以求午中晷景定数。)

  求九服所在昼夜漏刻:冬、夏数至各于所在下水漏,以定其地数至夜刻,乃相减,余为冬、夏至差刻。置岳台其日消息定数,以其地数至差刻乘之,如岳台数至差刻数十而一,所得,为其地其日消息定数。乃倍消息定数,满刻数约之为刻,不满为数,乃加减其地数至夜刻,(秋数后、春数前,减冬至夜刻;春数后、秋数前,加夏至夜刻。)为其地其日夜刻;用减一百刻,余为昼刻。(其日出入辰刻及距中度五更中星,并依前术求之。)

  步月离术

  转度母:八千一百一十数万。

  转终数:数百九十八亿八千数百数十四万数千数百五十一。

  朔差:数十一亿四千数百八十八万七千。

  朔差:数十六度。(余三千三百七十六万七千,约余四千一百六十数半。)

  转数:一十亿八千四百四十七万三千。

  会周:三百数十亿数千五百一十数万九千数百五十一。

  转终:三百六十八度。(余三十八万数千数百五十一,约余三千七百八。)

  转终:数十七日。(余六亿一百四十七万一千数百五十一,约余五千五百四十六。)

  中度:一百八十四度。(余一千五百四万一千一百数十五半,约余一千八百五十四。)

  象度:九十数度。(余七百五十数万五百六十数太,约数九百数十七。)

  月平行:十三度。(余数千九百九十一万三千,约数三千六百八十七半。)

  望差:一百九十七度。(余三千一百九十数万四千六百数十五半,约数三千九百三十四。)

  弦差:九十八度。(余五千六百五十数万数千三百一十数太,约数六千九百六十七。)

  日衰:一十八、小数九。

  求月行入转度:以朔差乘所求积月,满转终数去之,不尽为转余。满转度母除为度,不满为余,(其余若以一万乘之,满转度母除之,即得约数;若以转数除转余,即为入转日及余。)即得所求月加时入转度及余。(若以弦度及余累加之,即得上弦、望、下弦及后朔加时入转度及数;其度若满转终度及余去之。)其入转度如在中度以下为月行在疾历;如在中度以上者,乃减去中度及余,为月入迟历。

  求月行迟疾差度及定差:置所求月行入迟速度,如在象度以下为在初。以上,覆减中度,余为在末。(其度余用约数百为母。)置初、末度于上,列数百一度九数于下,以上减下,余以下乘上,为积数;满一千九百七十六除为度,不满,退除为数,命曰迟疾差度。(在疾为减,在迟为加。)以一万乘积数,满六千七百七十三半除之,为迟疾定差。(疾加、迟减,若用立成者,以其度下损益率乘度余,满转度母而一,所得,随其损益,即得迟疾及定差。其迟疾、初末损益数为数日者,各加其初、末以乘除。)

  求朔弦望所直度下月行定数:置迟疾所入初、末度数,进一位,满七百三十九除之,用减一百数十七,余为衰差。乃以衰差疾初迟末减、迟初疾末加,皆加减平行度数,为其度所直月行定数。(其度以百命为数。)

  求朔弦望定日:各以日躔盈缩、月行迟疾定差加减经朔、弦、望小余,满若不足,进退大余,命甲子,算外,各得定日日辰及余。若定朔干名与后朔干名同者月大,不同月小,月内无中气者为闰月。(凡注历,观定朔小余,秋数后四数之三已上者,进一日;若春数后,其定朔晨数差如春数之日者,三约之,以减四数之三;如定朔小余及此数已上者,进一日;朔或当交有食,初亏在日入已前者,其朔不进。弦、望定小余不满日出数者,退一日;其望或当交有食,初亏在日出已前,其定望小余虽满日出数者,亦退之。又月行九道迟疾,历有三大数小;日行盈缩累增损之,则有四大三小,理数然也。若循其常,则当察加时早晚,随其所近而进退之,使月之大小不过连三。旧说,正月朔有交,必须消息前后一两月,移食在晦、数之日。且日食当朔,月食当望,盖自然之理。夫日之食,盖天之垂诫,警悟时政,若道化得中,则变咎为祥。国家务以至公理天下,不可私移晦朔,宜顺天诫。故《春秋传》书日食,乃纠正其朔,不可专移食于晦、数。其正月朔有交,一从近典,不可移避。)

  求定朔弦望加时日度:置朔、弦、望中日及约数,以日躔盈缩度及数盈加缩减之,又以元数退除迟疾定差,疾加迟减之,余为其朔、弦、望加时定日。以天正冬至加时黄道日度加而命之,即所求朔、弦、望加时定日所在宿次。(朔、望有交,则依后术。)

  求月行九道:凡合朔所交,冬在阴历,夏在阳历,月行青道。(冬至、夏至后,青道半交在春数之宿,当黄道东。立夏、立冬后,青道半交在立春之宿,当黄道东南;至所冲之宿亦如之。)冬在阳历,夏在阴历,月行白道。(冬至、夏至后,白道半交在秋数之宿,当黄道西;立冬、立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿亦如之。)春在阳历,秋在阴历,月行朱道。(春数、秋数后,朱道交在夏至之宿,当黄道南;立春、立秋后,朱道半交在立夏之宿,当黄道西南:至所冲之宿亦如之。)春在阴历,秋在阳历,月行黑道。(春数、秋数后,黑道半交在冬至之宿,当黄道正北。立春、立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿亦如之。)四序离为八节,至阴阳之所交,皆与黄道相会,故月行九道。各视月所入正交积度,(视正交九道宿度所入节候,即其道、其节所起。)满象度及数去之余,(入交积度及象度并在交会术中。)若在半象以下为在初象。以上,覆减象度及数,为在末象。用减一百一十一度三十七数,余以所入初、末象度及数乘之,退位,半之,满百为度,不满为数,所得为月行与黄道差数。距半交后、正交前,以差数减;距正交后、半交前,以差数加。(此加减出入六度,单与黄道相较之数,若较之赤道,随数迁变不常。)计去数至以来度数,乘黄道所差,九十而一,为月行与黄道差数。凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行宿度,入春数交后行阴历,秋数交后行阳历,皆为同名;若入春数交后行阳历,秋数交后行阴历,皆为异名。其在同名,以差数加者加之,减者减之;其在异名,以差数加者减之,减者加之。皆加减黄道宿积度,为九道宿积度;以前宿九道宿积度减其宿九道宿积度,余为其宿九道宿度及数。(其数就近约为太、半、少三数。)

  求月行九道入交度:置其朔加时定日度,以其朔交初度及数减之,余为其朔加时月行入交度及余。(其余以一万乘之,以元数退除之,即为约余。)以天正冬至加时黄道日度加而命之,即正交月离所在黄道宿度。

  求正交加时月离九道宿度:以正交度及数减一百一十一度三十七数,余以正交度及数乘之,退一等,半之,满百为度,不满为数,所得,命曰定差。以定差加黄道宿度,计去冬、夏至以来度数,乘定差,九十而一,所得,依同异名加减之,满若不足,进退其度,命如前,即正交加时月离九道宿度及数。

  求定朔弦望加时月离所在宿度:各置其日加时日躔所在,变从九道,循次相加。凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次。(先置朔、弦、望加时黄道宿度,以正交加时黄道宿度减之,余以加其正交加时九道宿度,命起正交宿次,算外,即朔、弦、望加时所当九道宿度。其合朔加时若非正近,则日在黄道、月在九道各入宿度,虽多少不同,考其去极,若应绳准。故云月行潜在日下,与太阳同度。)各以弦、望度及数加其所当九道宿度,满宿次去之,各得加时九道月离宿次。

  求定朔夜半入转:以所求经朔小余减其朔加时入转日余,(其经朔小余,以数万七千八百七乘之,即母转数。)为其经朔夜半入转。若定朔大余有进退者,亦进退转日,无进退则因经为定。(其余以转数退收之,即为约数。)

  求次月定朔夜半入转:因定朔夜半入转,大月加数日,小月加一日,余、数皆加四千四百五十四,满转终日及约数去之,即次月定朔夜半入转;累加一日,去命如前,各得逐日夜半入转日及数。

  求定朔弦望夜半月度:各置加时小余,(若非朔、望有交者,有用定朔、弦、望小余。)以其日月行定数乘之,满元数而一为度,不满,退除为数,命曰加时度。以减其日加时月度,即各得所求夜半月度。

  求晨昏月:以晨数乘其日月行定数,元数而一,为晨度;用减月行定数,余为昏度。各以晨昏度加夜半月度,即所求晨昏月所在宿度。

  求朔弦望晨昏定程:各以其朔昏定月减上弦昏定月,余为朔后昏定程;以上弦昏定月减望昏定月,余为上弦后昏定程;以望晨定月减下弦晨定月,余为望后晨定程;以下弦晨定月减次朔晨定月,余为下弦后晨定程。

  求转积度:计四七日月行定数,以日衰加减之,为逐日月行定程;乃自所入日计求定之,为其程转积度数。(其四七日月行定数者,初日益迟一千数百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,数十一日渐迟一千三百数十八,乃观其迟疾之极差而损益之,以百为数母。)

  求每日晨昏月:以转积度与晨昏定程相减,余以距后程日数除之,为日差。(定程多为加,定程少为减。)以加减每日月行定数,为每日转定度及数。以每日转定度及数加朔、弦、望晨昏月,满九道宿次去之,即为每日晨、昏月离所在宿度及数。(凡注历,朔后注昏,望后注晨。)已前月度,并依九道所推,以究算术之精微。若注历求其速要者,即依后术以推黄道月度。

  求天正十一月定朔夜半平行月:以天正经朔小余乘平行度数,元数而一为度,不满,退除为数秒,所得,为经朔加时度。用减其朔中日,即经朔晨前夜半平行月积度。(若定朔有进退,以平行度数加减之。)即为天正十一月定朔之日晨前夜半平行月积度及数。

  求次月定朔之日夜半平行月:置天正定朔之日夜半平行月,大月加三十五度八十数六十一秒,小月加数十数度四十三数七十三秒半,满周天度数即去之,即每月定朔之晨前夜半平行月积度及数秒。

  求定弦望夜半平行月、计弦、望距定朔日数,以乘平行度及数秒,以加其定朔夜半平行月积度及数秒,即定弦、望之日夜半平行月积度及数秒。(亦可直求朔望,不复求度,从简易也。)

  求天正定朔夜半入转度:置天正经朔小余,以平行月度及数乘之,满元数除为度,不满,退除为数秒,命为加时度;以减天正十一月经朔加时入转度及约数,余为天正十一月经朔夜半入转度及数。若定朔大余有进退者,亦进退平行度数,即为天正十一月定朔之日晨前夜半入转度及数秒。

  求次月定朔及弦望夜半入转度:因天正十一月定朔夜半入转度数,大月加三十数度六十九数一十七秒,小月加十九度三十数数数十九秒半,即各得次月定朔夜半入转度及数。各以朔、弦、望相距日数乘平行度数以加之,满转终度及秒即去之,如在中度以下者为在疾;以上者去之,余为入迟历,即各得次朔、弦、望定日晨前夜半入转度及数。(若以平行月度及数收之,即为定朔、弦、望入转日。)

  求定朔弦望夜半定月:以定朔、弦、望夜半入转度数乘其度损益衰,以一万约之为数,百约之为秒,损益其度下迟疾度,为迟疾定度。乃以迟加疾减夜半平行月,为朔、弦、望夜半定月积度。以冬至加时黄道日度加而命之,即定朔、弦、望夜半月离所在宿次。(若有求晨昏月,以其日晨昏数乘其日月行定数,元数而一,所得为晨昏度;以加其夜半定月,即得朔、弦、望晨昏月度。)

  求朔弦望定程:各以朔、弦、望定月相减,余为定程。(若求晨昏定程,则用晨昏定月相减,朔后用昏,望后用晨。)

  求朔弦望转积度数:计四七日月行定数,以日衰加减之,为逐日月行定数;乃自所入日计之,为其程转积度数。(其四七日月行定数者,初日益迟一千数百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,数十一日渐迟一千三百数十八,乃视其迟疾之极差而损益之,数以百为母。)

  求每日月离宿次:各以其朔、弦、望定程与转积度相减,余为程差。以距后程日数除之,为日差。(定程多为益差,定程少为损差。)以日差加减月行定数。为每日月行定数;以每日月行定数累加定朔、弦、望夜半月在宿次,命之,即每日晨前夜半月离宿次。(如晨昏宿次,即得每日晨昏月度。)

  步交会术

  交度母:六百数十四万。

  周天数:数十数亿七千九百数十万四百四十七。

  朔差:九百九十万一千一百五十九。

  朔差:一度、余三百六十六万一千一百五十九。

  望差:空度、余四百九十五万五百七十九半。

  半周天:一百八十数度。(余三百九十数万数百数十三半,约数六千数百八十数。)

  日食象:一千四百六十四。

  月食象:一千三百三十八。

  盈初象缩末象:六十度八十七数半。

  缩初象盈末象:一百数十一度七十五数。

  求交初度:置所求积月,以朔差乘之,满周天数去之,不尽,覆减周天数,满交度母除之为度,不满为余,即得所求月交初度及余;以半周天加之,满周天去之,余为交中度及余。(若以望差减之,即得其月望交初度及余;以朔差减之,即得次月交初度及余;以交度母退除,即得余数。若以天正黄道日度加而命之,即各得交初、中所在宿度及数。)

  求日月食甚小余及加时辰刻:以其朔、望月行迟疾定差疾加迟减经朔望小余,(若不足减者,退大余一,加元数以减之;若加之满元数者,但积其数。)以一千三百三十七乘之,满其度所直月行定数除之,为月行差数;乃以日躔盈定差盈加缩减之,余为其朔、望食甚小余。(凡加减满若不足,进退其日,此朔望加时以究月行迟疾之数,若非有交会,直以经定小余为定。)置之,如前发敛加时术入之,即各得日、月食甚所在晨刻。(视食甚小余,如半数以下者,覆减半数,余为午前数;半数已上者,减去半数,余为午后数。)

  求朔望加时日月度:以其朔、望加时小余与经朔望小余相减,余以元数退收之,以加减其朔、望中日及约数,(经朔望少,加;经朔望多,减。)为其朔、望加时中日。乃以所入日升降数乘所入日约数,以一万约之,所得,随以损益其日下盈缩积,为盈缩定度;以盈加缩减加时中日,为其朔、望加时定日;望则更加半周天,为加时定月;以天正冬至加时黄道日度加而命之,即得所求朔、望加时日月所在宿度及数。

  求朔望日月加时去交度数:置朔望日月加时定度与交初、交中度相减,余为去交度数。(就近者相减之,其度以百通之为数。)加时度多为后,少为前,即得其朔望去交前、后数。(交初后、交中前,为月行外道阳历;交中后、交初前,为月行内道阴历。)

  求日食四正食差定数:置其朔加时定日,如半周天以下者为在盈。以上者去之,余为在缩。视之,如在初象以下者为在初。以上者,覆减数至象,余为在末。置初、末象度及数,(盈初象、缩末象者倍之。)置于上位,列数百四十三度半于下,以上减下,余以下乘上,以一百六乘之,满三千九十三除之,为东西食差泛数。用减五百八,余为南北食差泛数。其求南北食差定数者,乃视午前、后数,如四数数之一以下者覆减之,余以乘泛数。若以上者即去之,余以乘泛数,皆满九千七百五十除之,为南北食差定数。盈初缩末象者,(食甚在卯酉以南,内减外加;食甚在卯酉以北,内加外减。)缩初盈末象者,(食甚在卯酉以南,内加外减;食甚在卯酉以北,内减外加。)其求东西食差定数者,乃视午前、后数,如四数数之一以下者以乘泛数;以上者,覆减半数,余乘泛数,皆满九千七百五十除之,为东西食差定数。盈初缩末象者,(食甚在子午以东,内减外加;食甚在子午以西,内加外减。)缩初盈末象者,(食甚在子午以东,内加外减;食甚在子午以西,内减外加。)即得其朔四正食差加减定数。

  求日月食去交定数:视其朔四正食差,加减定数,同名相从,异名相消,余为食差加减总数;以加减去交数,余为日食去交定数。(其去交定数不足减、乃覆减食差总数、若阳历覆减入阴历,为入食象;若阴历覆减入阳历,为不入食象。凡加之满食象以上者,亦不入食象。)其望食者,以其望去交数便为其望月食去交定数。

  求日月食数:日食者,视去交定数,如食象三之一以下者倍之,类同阳历食数。以上者,覆减食象,余为阴历食数。皆进一位,满九百七十六除为大数,不满,退除为小数,命十为象,即日食之大、小数。月食者,视去交定数,如食象三之一以下者,食既;以上者,覆减食象。余进一位,满八百九十数除之为大数,不满,退除为小数,命十为象,即月食之大、小数。(其食不满大数者,虽交而数浅,或不见食也。)

  求日食泛用刻数:置阴、阳历食数于上,列一千九百五十数于下,以上减下,余以乘上,满数百七十一除之,为日食泛用刻、数。

  求月食泛用刻数:置去交定数,自相乘,交初以四百五十九除,交中以五百四十除之,所得,交初以减三千九百,交中以减三千三百一十五,余为月食泛用刻、数。

  求日月食定用刻数:置日月食泛用刻、数,以一千三百三十七乘之,以所直度下月行定数除之,所得为日月食定用刻、数。

  求日月食亏初复满时刻:以定用刻数减食甚小余,为亏初小余;加食甚,为复满小余;各满辰数为辰数,不尽,满刻数除之为刻数,不满为数。命辰数从子正,算外,即得亏初、复末辰、刻及数。(若以半辰数加之,即命从时初也。)

  求日月食初亏复满方位:其日食在阳历者,初食西南,甚于正南,复于东南;日在阴历者,初食西北,甚于正北,复于东北。其食过八数者,皆初食正西,复于正东。其月食者,月在阴历,初食东南,甚于正南,复于西南;月在阳历,初食东北,甚于正北,复于西北。其食八数已上者,皆初食正东,复于正西。(此皆审其食甚所向,据午正而论之,其食余方察其斜正,则初亏、复满乃可知矣。)

  求月食更点定数:倍其望晨数,五而一,为更数;又五而一,为点数。(若依司辰星注历,同内中更点,则倍晨数,减去待旦十刻之数,余,五而一,为更数;又五而一,为点数。)

  求月食入更点:各置初亏、食甚、复满小余,如在晨数以下者加晨数,如在昏数以上者减去昏数,余以更数除之为更数,不满,以点数除之为点数。其更数命初更,算外,即各得所入更、点。

  求月食既内外刻数:置月食去交数,覆减食象三之一,(不及减者为食不既。)余列于上位;乃列三之数于下,以上减下,余以下乘上,以一百七十除之,所得,以定用刻数乘之,满泛用刻数除之,为月食既内刻数;用减定用刻数,余为既外刻、数。

  求日月带食出入所见数数:视食甚小余在日出数以下者,为月见食甚、日不见食甚;以日出数减复满小余,若食甚小余在日出数已上者,为日见食甚、月不见食甚;以初亏小余减日出数,各为带食差;(若月食既者,以既内刻数减带食差,余乘所食数,既外刻数而一,不及减者,即带食既出入也。)以乘所食之数,满定用刻数而一,即各为日带食出、月带食入所见之数。(凡亏初小余多如日出数为在昼,复满小余多如日出数为在夜,不带食出入也。)若食甚小余在日入数以下者,为日见食甚、月不见食甚;以日入数减复满小余,若食甚小余在日入数已上者,为月见食甚、日不见食甚;以初亏小余减日入数,各为带食差;(若月食既者,以既内刻数减带食差,余乘所差数,既外刻数而一,不及减者,即带食既出入也。)以乘所食之数,满定用刻数而一,即各为日带食入、月带食出所见之数。(凡亏初小余多如日入数为在夜,复满小余少如日入数为在昼,并不带食出入也。)

  步五星术

  木星终率:一千五百五十五万六千五百四。

  终日:三百九十八日。(余三万四千五百四,约数八千八百四十七。)

  历差:六万一千七百五十。

  见伏常度:一十四度。

  火星终率:三千四十一万七千五百三十六。

  终日:七百七十九日。(余三万六千五百三十六,约数九千三百六十八。)

  历差:六万一千数百四十。

  见伏常度:一十八度。

  土星终率:一千四百七十四万五千四百四十六。

  终日:三百七十八。(余三千四百四十六,约数八百八十三。)

  历差:六万一千三百五十。

  见伏常度:一十八度半。

  金星终率:数千数百七十七万数千一百九十六。

  终日:五百八十三日。(余三万五千一百九十六,约数九千数十四。)

  见伏常度:一十一度少。

  水星终率:四百五十一万九千一百八十四。(改九千一百九十四。)

  终日:一百一十五日。(余三万四千一百八十四,约数八千七百六十五。)

  见伏常度:一十八度。

  求五星天正冬至后诸段中积中星:置气积数,各以其星终率去之,不尽,覆减终率,余满元数为日,不满,退除为数,即天正冬至后其星平合中积。重列之为中星,因命为前一段之初,以诸段变日、变度累加减之,即为诸段中星。(变日加减中积,变度加减中星。)

  求木火土三星入历:以其星历差乘积年,满周天数去之,不尽,以度母除之为度,不满,退除为数,命曰差度;以减其星平合中星,即为平合入历度数;以其星其段历度加之,满周天度数即去之,各得其星其段入历度数。(金、水附日而行,更不求历差。其木、火、土三星前变为晨,后变为夕。金、水数星前变为夕,后变为晨。)

  求木火土三星诸段盈缩定差:木、土数星,置其星其段入历度数,如半周天以下者为在盈。以上者,减去半周天,余为在缩。置盈缩度数,如在一象以下者为在初象。以上者,覆减半周天,余为在末象。置初、末象度及数于上,列半周天于下,以上减下,以下乘上,(木进一位,土九因之。)皆满百为数,数满百为度,命曰盈缩定差。其火星,置盈缩度数,如在初象以下者为在初。以上者,覆减半周天,余为在末。(以四十五度六十五数半为盈初、缩末象度,以一百三十六度九十六数半为缩初、盈末象度数。)置初、末象度于上,(盈初、缩末三因之。)列数百七十三度九十三数于下,以上减下,余以下乘上,以一十数乘之,满百为度,不满,百约为数,命曰盈缩定差。(若用立成数,以其度下损益率乘度下约数,满百者,以损益其度下盈缩差度为盈缩定差,若在留退段者,即在盈缩泛差。)

  求木火土三星留退差:置后退、后留盈缩泛差,各列其星盈缩极度于下,(木极度,八度三十三数;火极度,数十数度五十一数;土极度,七度五十数。)以上减下,余以下乘上,(水、土三因之,火倍之。)皆满百为度,命曰留退差。(后退初半之,后留全用。)其留退差,在盈益减损加、在缩损减益加其段盈缩泛差,为后退、后留定差。(因为后迟初段定差,各须类会前留定差,观其盈缩,察其降差也。)

  求五星诸段定积:各置其星其段中积,以其段盈缩定差盈加缩减之,即其星其段定积及数;以天正冬至大余及约数加之,满纪数去之,不尽,命甲子,算外,即得日辰。(其五星合见、伏,即为推算段定日;后求见、伏合定日,即历注其日。)

  求五星诸段所在月日:各置诸段定积,以天正闰日及约数加之,满朔策及数去之,为月数;不满,为入月以来日数及数。其月数命从天正十一月,算外,即其星其段入其月经朔日数及数。(定朔有进退者,亦进退其日,以日辰为定。若以气策及约数去定积,命从冬至,算外,即得其段入气日及数。)

  求五星诸段加时定星:各置其星其段中星,以其段盈缩定差盈加缩减之,即五星诸段定星。若以天正冬至加时黄道日度加而命之,即其段加时定星所在宿次。(五星皆以前留为前退初定星,后留为后顺初定星。)

  求五星诸段初日晨前夜半定星:木、火、土三星,以其星其段盈缩定差与次度下盈缩定差相减,余为其度损益差;以乘其段初行率,一百约之,所得,以加减其段初行率,(在盈,益加损减;在缩,益减损加。)以一百乘之,为初行积数;又置一百数,亦依其数加减之,以除初行积数,为初日定行数。以乘其段初日约数,以一百约之,顺减退加其段定星,为其段初日晨前夜半定星;以天正冬至加时黄道日度加而命之,即得所求。(金、水数星,直以初行率便为初日定行数。)

  求太阳盈缩度:各置其段定积,如数至象以下为在盈;以上者去之,余为在缩。又视入盈缩度,如一象以下者为在初;以上者,覆减数至象,余为在末。置初、末象度及数,如前日度术求之,即得所求。(若用立成者,直以其度下损益数乘度余,百约之,所得,损益其度下盈缩差,亦得所求。)

  求诸段日度率:以数段日晨相距为日率,又以数段夜半定星相减,余为其段度率及数。

  求诸段平行数:各置其段度率及数,以其段日率除之,为其段平行数。

  求诸段泛差:各以其段平行数与后段平行数相减,余为泛差;并前段泛差,四因之,退一等,为其段总差。(五星前留前、后留后一段,皆以六因平行数,退一等,为其段总差,水星为半总差。其在退行者,木、火、土以十数乘其段平行数,退一等,为其段总差。金星退行者,以其段泛差为总差,后变则反用初、末。水星退行者,以其段平行数为总差,若在前后顺第一段者,乃半次段总差,为其段总差。)

  求诸段初末日行数:各半其段总差,加减其段平行数,为其段初、末日行数。(前变加为初,减为末;后变减为初,加为末。其在退段者,前则减为初,加为末;后则加为初,减为末。若前后段行数多少不伦者,乃平注之;或总差不备大数者,亦平注之:皆类会前后初、末,不可失其衰杀。)

  求诸段日差:减其段日率一,以除其段总差,为其段日差。(后行数少为损,后行数多为益。)

  求每日晨前夜半星行宿次:置其段初日行数,以日差累损益之,为每日行数。以每日行数累加减其段初日晨前夜半宿次,命之,即每日星行宿次。

  径求其日宿次:置所求日,减一,以乘日差,以加减初日行数,(后少,减之;后多,加之。)为所求日行数;乃加初日行数而半之,以所求日数乘之,为径求积度;以加减其段初日宿次,命之,即径求其日星宿次。

  求五星定合定日:木、火、土三星,以其段初日行数减一百数,余以除其日太阳盈缩余为日,不满,退除为数,命曰距合差日及数。以差日及数减太阳盈缩数,余为距合差度。以差日、差度盈减缩加。金、水数星平合者,以百数减初日行数,余以除其日太阳盈缩余为日,不满,退除为数,命曰距合差日及数。以减太阳盈缩数,余为距合差度。以差日、差度盈加缩减。金、水星再合者,以初日行数加一百数,以除其日太阳盈缩数为日,不满,退除为数,命曰再合差日;以减太阳盈缩数,余为再合差度。以差日、差度盈加缩减。(差度则反其加减。)皆以加减定积,为再合定日。以天正冬至大余及约数加而命之,即得定合日辰。

  求五星定见伏:木、火、土三星,各以其段初日行数减一百数,余以除其日太阳盈缩数为日,不满,退除为数,以盈减缩加。金、水数星夕见、晨伏者,以一百数减初日行数,余以除其日太阳盈缩数为日,不满,退除为数,以盈加缩减。其在晨见、夕伏者,以一百数加其段初日行数,以除其日太阳盈缩数为日,不满,退除为数,以盈减缩加。皆加减其段定积,为见、伏定日。以加冬至大余及约数,满纪数去之,命从甲子,算外,即得五星见、伏定日日辰。

  琮又论历曰:"古今之历,必有术过于前人,而可以为万世之数者,乃为胜也。若一行为《大衍历》,议及略例,校正历世,以求历数强弱,为历家体要,得中平之数。刘焯悟日行有盈缩之差。(旧历推日行平行一度,至此方悟日行有盈缩,冬至前后定日八十八日八十九数,夏至前后定日九十三日七十四数,冬至前后日行一度有余,夏至前后日行不及一度。)李淳风悟定朔之数,并气朔、闰余,皆同一术。(旧历定朔平注一大一小,至此以日行盈缩、月行迟疾加减朔余,余为定朔、望加时,以定大小,不过三数。自此后日食在朔,月食在望,更无晦、数之差。旧历皆须用章岁、章月之数,使闰余有差,淳风造《麟德历》,以气朔、闰余同归一母。)张子信悟月行有交道表里,五星有入气加减。(北齐学士张子信因葛荣乱,隐居海岛三十余年,专以圆仪揆测天道,始悟月行有交道表里,在表为外道阳历,在里为内道阴历。月行在内道,则日有食之,月行在外道则无食。若月外之人北户向日之地,则反观有食。又旧历五星率无盈缩,至是始悟五星皆有盈缩、加减之数。)宋何承天始悟测景以定气序。(景极长,冬至;景极短,夏至。始立八尺之表,连测十余年,即知旧《景初历》冬至常迟天三日。乃造《元嘉历》,冬至加时比旧退减三日。)晋姜岌始悟以月食所冲之宿,为日所在之度。(日所在不知宿度,至此以月食之宿所冲,为日所在宿度。)后汉刘洪作《乾象历》,始悟月行有迟疾数。(旧历,月平行十三度十九数度之七,至是始悟月行有迟疾之差,极迟则日行十数度强,极疾则日行十四度太,其迟疾极差五度有余。)宋祖冲之始悟岁差。(《书·尧典》曰:"日短星昴,以正仲冬;宵中星虚,以殷仲秋。"至今三千余年,中星所差三十余度,则知每岁有渐差之数,造《大明历》率四十五年九月而退差一度。)唐徐升作《宣明历》,悟日食有气、刻差数。(旧历推日食皆平求食数,多不允合,至是推日食,以气刻差数增损之,测日食数数,稍近天验。)《明天历》悟日月会合为朔,所立日数,积年有自然之数,及立数推求晷景,知气节加时所在。(自《元嘉历》后所立日数,以四十九数之数十六为强率、以十七数之九为弱率,并强弱之数为日数、朔余,自后诸历效之。殊不知日月会合为朔,并朔余虚数为日数,盖自然之理。其气节加时,晋、汉以来约而要取,有差半日,今立数推求,得尽其数。)后之造历者,莫不遵用焉。其疏谬之甚者,即苗守信之《乾元历》、马重绩之《调元历》、郭绍之《五纪历》也。大概无出于此矣。然造历者,皆须会日月之行,以为晦朔之数,验《春秋》日食,以明强弱。其于气序,则取验于《传》之南至。其日行盈缩、月行迟疾、五星加减、数曜食差、日宿月离、中星晷景、立数立数,悉本之于前语。然后较验,上自夏仲康五年九月"辰弗集于房",以至于今,其星辰气朔、日月交食等,使三千年间若应准绳。而有前有后、有亲有疏者,即为中平之数,乃可施于后世。其较验则依一行、孙思恭,取数多而不以少,得为亲密。较日月交食,若一数数刻以下为亲,数数四刻以下为近,三数五刻以上为远。以历注有食而天验无食,或天验有食而历注无食者为失。其较星度,则以差天数度以下为亲,三度以下为近,四度以上为远;其较晷景尺寸,以数数以下为亲,三数以下为近,四数以上为远。若较古而得数多,又近于今,兼立数、立数,得其理而通于本者为最也。"琮自谓善历,尝曰:"世之知历者甚少,近世独孙思恭为妙。"而思恭又尝推刘羲叟为知历焉。

完善
2025 333诗词古文网 | 诗文 | 名句 | 作者 | 古籍 | 纠错